
Journal of Mathematical Chemistry 2(1988)299- 323 299 

SHAPE GROUP STUDIES OF MOLECULAR SIMILARITY: 
SHAPE GROUPS AND SHAPE GRAPHS OF MOLECULAR 
CONTOUR SURFACES 

Paul G. MEZEY 

Department o.[ Chemistry and Department of Mathematics, University of Saskatchewan, 
Saskatoon, Saskatchewan, Canada S7N OWO 

Received 9 October 1987 

Abstract 

The earlier, symmetry-independent group theoretical characterization of the 
shapes of three-dimensional molecular functions, such as electrostatic potentials, 
electronic charge densities, or molecular orbitals, is extended and compared to a 
new family of shape descriptors. The incidence graphs and shape graphs, defined 
by the curvature properties of various molecular contour surfaces, provide an 
easily visualizable, alternative mathematical technique for a computer-based, non- 
visual evaluation of molecular shape and molecular similarity. The invariance 
domains of incidence graphs, shape graphs and shape groups within the dynamic 
shape space D provide the mathematical basis for the development of a general 
method for a dynamic description of molecular shapes. 

1. I n t r o d u c t i o n  

Characterization of molecular shapes and the recognition and description of 
similarity among molecules are of major importance in chemistry. Computational 
Inethods for the detection of common shape features within families of molecules 
showing similar biochemical activity have acquired particular significance in modern 
pharmaceutical research, as well as in pesticide and herbicide chemistry. Molecular 
shape is an important consideration in drug design and in the development of quanti- 
tative structure-activity relationships (QSAR). 

The earliest approaches for the description of molecular shape have followed 
two main strategies: either based on a molecular "skeleton" described by formal 
bonds, structural tbrmulas and "ball-and:stick" models developed from them, or 
based on a model of "hard" molecular body, developed from space-filling models, 
Van der Waals surfaces, or similar descriptions. Whereas both types of models are 
suitable to describe some internal motions, such as rigid bond rotations, nevertheless 
they lack the flexibility and deformability of real, non-rigid molecules. 
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In more recent approaches, various aspects of molecular shape have been 
described using contour surfaces of calculated quantum chemical properties, most 
commonly charge density contours and contours of electrostatic potentials [ 1 - 2 9 ] .  
By allowing the nuclei to undergo unconstrained configuration changes and by select- 
ing several representative values t\~r the quantum chemical property, e.g. for charge 
density, it is possible, in principle, to generate a whole sequence of contour surfaces 
that provides a detailed description. The main problem with the latter approach is 
interpretation: the contour surfaces are usually displayed on a computer screen and 
the recognition of shape features and decisions concerning similarity between mole- 
cules are based on visual inspection. This is not necessarily the most reliable approach, 
particularly if many (for example, several thousand) molecules are inw)lved. 

It appears desirable to develop alternative methods, where shape recognition 
and the evaluation of molecular similarity are based on the mall~ematical (geometrical 
and topological) properties of the contour surfaces. This can lead to a fully automatic, 
computer-based analysis of large families of molecules. Such an analysis is possible 
using the algebraic technique of sj'mmett?:-indel)endent shape groups, proposed 
recently [30--33].  in this method, each contour surface is decomposed into domains 
of various curvature properties, or domains defined by some other physical criteria. 
The topological relations among these domains define a family of h~)moh),~9~ A¢oups, 
using the methods of algebraic topology [ 3 4 - 3 7 ] .  These groups, while independent 
of the syminetry of the contour surfaces, provide a detailed shape characterization, 
as well as a mathematical basis for a precise evaluation of molecular similarity. Since 
m the actual construction each group is defined by the shape of the contour surface, 
in the molecular context these groups are collectively referred to as molecular shape 
A, re~ul)s [30,31 ] . 

In the present study, we shall consider the properties of such shape groups in 
comparison with some alternative tools for the characterization of molecular shape: 
incidence graphs, shape gral)hS, and dynamic shape ,g*raphs, the latter describing the 
dynamic features of molecular shape. All these shape descriptors have their common, 
physical origin in molecular contour surfaces, such as charge density contours or 
contours of electrostatic potentials, that are used to define the three-dimensional 
body of molecules. Molecular contour surlaces may be subdivided into domains (cells) 
based on curvature or other properties. Whereas the subdivision of the continuous 
contour surface into domains is a function of a set of continuous parameters 
(e.g. curvature bounds), nevertheless the resulting tools of shape characterization 
are groups and graphs of discrete mathematics, which is an essential simplification. 
The fundmnental interrelations mnong these domains and their boundary segments 
define algebraic-topological relations which can be represented by groups: by 
molecular shape groups [30,31]. Alternatively, some of these interrelations can be 
represented by various graphs. The f\mdamental concepts leading to incidence graphs 
and to some of the shape graphs may be introduced relying on simple intuitive notions, 
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without direct reference to algebraic topology and shape groups. For example, the 
vertices of some incidence graphs correspond to the domains and their boundary 
seganents, whereas an edge between two vertices v I and v 2 corresponds to the rela- 
tion "v~ is oil the boundary of v 2 " or "u 2 is on the boundary of v~". However, a 
unified treatment and comparison of these shape descriptors are the simplest if one 
chooses as the starting point the topological model leading to the shape groups [30,31]. 
Furthemlore, an important family of dynamic shape graphs is defined directly in 
terms of shape groups (vide inj')a); hence, some of the tools of algebraic topology are 
essential for this purpose. 

In what follows, we shall give a rather brief review of the construction, defini- 
tion, and some properties of shape groups that are essential to the development of 
the method described in the subsequent sections. Note that a more detailed intro- 
duction can be found in refs. [30] and [31]. 

Each shape group ItP(u, a, b) is characterized by four parameters, p, u, a, and b, 
where the superscript p is a dimension parameter, index u is characteristic to a family 
of subsets obtained by a decomposition of the contour surface, with reference to a 
curvature parameter b, whereas parameter a is the contour value, e.g. the charge 
density value along an isodensity contour G(a). The precise definitions of parameters 
b, p, ~,, and a brief outline of the shape groups, are given below. 

We may regard a small neighborhood of point r on the contour surface G(a) 
as a function expressed over the tangent plane 2R(r) of G(a) at this point r. This 
t\mction is regarded negative along the normal vector of the tangent plane pointing 
toward the interior of G(a), it is zero at point r, and positive in the opposite direction. 
By the verb, definition of the tangent plane 2R(r), this function has a critical point 
at point r. Since the surface G(a) is twice continuously differentiable, the Hessian 
matrix lI~(r) of this function is well defined at point r. 

The matlix elements Hi/(r ) of IHl(r) are the second derivatives of a function 
obtained by regarding the contour surface G(a) as a function defined over its local 
tangent plane at point r. Since in general the tangent plane 2R (r) and the local co- 
ordinate system varies with point r, we shall refer to this Hessian matrix 

as the local 11essian at point r [30,31]. The local curvature properties of the contour 
surface G(a) at each point r are characterized by II~(r): the local canonical curvatures 
h I and h 2 are the eigen~'alues of the local Hessian matrix lHl(r) [38]. 

The local curvature properties are distinguished according to a curvature 
parameter b: the number # = I~(r, b) for each point r is defined as the number of 
local canonical curvatures that are less than b. In the special case of b = O, g is the 
number of negative eigenvalues, that is, p is tile index of point r. Each point r of the 
contour surface G(a) belongs to one of three disjoint subsets Ao, A l or A 2 of G(a), 
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where G(a) = A o tO A~ tO A 2 , depending on whether none, one or both, respectively, 
of  the local canonical curvatures h~ and h 2 at point r is(are) smaller than the reference 
value b [38]. Each of  these sets A o, A~ and A 2 may well be disconnected. A maxi- 
mum connected component of set Ao, A~ or A 2 is denoted by D o , D~ or D 2, 
respectively. A typical Du domain is a two-dimensional subset of the contour surface 
G(a) for each index /1 = 0, 1, 2. We shall use index/a for a general Du domain and the 
index u for distinguished domains, for example, for those D,, domains which are 
eliminated from G(a). 

These Du domains form the basis of a decomposition of the contour surface 
G(a) into simply connected subsets: if a Du domain is multiply connected, then it 
is subdivided into simply connected subsets Du, k. The resulting shape groups are 
independent of the choice of the actual subdivision. 

In the more general case of an arbitrary, fixed curvature parameter b, each 
point r belongs to one and only one of the Du, k domains of some index/1 and serial 
index k, depending on which one of the following three conditions is fulfilled: 

r E Do, k for some k iff b ~ hi,  he, (2) 

r E D1, k for some k iff h 1 < b ~<~ h2, (3) 

r E D2, k for some k iff h~, h 2 < b. (4) 

In the above notation for the Du, k domains, the reference to curvature para- 
meter b is suppressed. If explicit reference is needed, then the Dub , k notation may be 
used. 

This decomposition of the contour surface G(a) by the /9, domains and their 
Du, k subdivisions leads to three types of objects: 

(i) two-dimensional objects, that are either the D~ domains themselves or 
their simply connected subdivisions Du, k ; 

(ii) one-dimensional objects, that are boundary line segments of the Du 
domains or their subdividing lines; 

(iii) zer0-dimensional objects, that are points where boundary line segments 
and subdivision lines meet. 

The above surface domains, line segments and points are analogous to tire 
faces, edges and vertices, respectively, of a polyhedron. We will use the C(p, ~, i) 
notation for these objects, called p-cells, where p is the dimension, /a is the index 
of  the D r domain that contains cell C(p, #, i), and i is a serial index. 

Each cell C(p, li, i )has  an orientation o(i) ,  forxnally denoted by +1 or - 1 .  
For a 2-cell, o(i) = +1 may correspond to an anticlockwise orientation, represented 
by a circular arrow on the cell, indicating an anticlockwise rotation when viewed 
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from the outside of  G(a); then o( i )  = - 1  corresponds to a clockwise orientation. 
For a 1-cell, orientation can be represented by an arrow along the corresponding 
line segment, with either, but  fixed, assigment of one of  the two possible values 
for o( i ) ,  whereas for 0-cells, all orientations may be defined to be the same, 
e.g. o( i )  = +1. The incidence n u m b e r  T?ij(P - 1) between a /)-cell C(p, IJ, i) and 
a (p - 1)-cell C(p - 1, u, j)  is given by 

*Tq(P-  1) = 

Z v i(P - l, 
k 

if  C ( p  - 1, p, j )  (~ Co(p, U, i)  4 = 0 

0 otherwise, 

(s) 

where for p = 2, ,/q( p - 1, k) is +1 if the two arrows point the same way and it is 
- 1  otherwise, and for p =  1, T q ( P -  1 , k )  is +1 if the arrow of the 1-cell points 
toward the 0-cell and it is - 1  if it points away from it. A 2-cell may be folded, 
meeting a 1-cell on several occasions; a 1-cell may be a loop starting and ending at 
the same 0-cell; hence, the 7ij(P - 1, k) numbers are summed up for all k occasions 
the two cells meet. In CC(p, tJ, i), the superscript c refers to the set theoretical closure 
of  cell C(p, tJ, i) in the metric of  the three-dimensional Euclidean space. That is, the 
incidence number ~i/(P - 1) is zero if C(p - 1, ~ , / )  is not  on the set theoretical 
boundary of celt C(p ,  II, i); otherwise it is the sum of  individual "encounter  numbers" 
~'i/(P - 1, k) that may take the values + 1 or - 1, depending on the relative orienta- 

tions of  these two cells. 
A p-chain is a formal linear combination of p-cells 

c p = ~ uiC(P,  tJ, i ) ,  (61) 
i = 1  

where we consider only integer coefficients U i -  

The bourMarv Ac p of a p-chain c p is defined as 

AcP = ~ ui ~i/(P - 1) C(p - 1, . , / ) .  
i,j 

(7) 

A p-o 'c le  is a p-chain with zero boundary.  A bounding p-cycle is a p-cycle 

that is the boundary o f a  (p + 1)-chain: 

cP  = /XcP +1 (8) 

For the addition of coefficients, tire p-chains, p-cycles and bounding p-cycles form 
the Abelian groups C p, Z p, and B p, respectively. The p t h  integral homology group H p 

is defined as the difference (quotient) group 
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H p = Z p - B p. (9) 

By eliminating all D,,,i domains of some specified index v and all indices i, %r 
the resulting truncated contour sulJ'ace G(a, u), three homology groups, the shape 
groups HP(p, a, b), are obtained, one for each of the dimensions p = 0, 1, and 2. 
Typically, the shape groups H ~ (2, a, b) for intermediate a and b values provide the 
most chenfically interesting information. 

These shape groups provide a concise description of the shape characteristics 
of the given molecular property (e.g. charge density). They are invariant within certain 
intervals of the two parameters a and b, and those parameter values % and b~ where 
the groups chm~ge is characteristic to the given molecular configuration. On the other 
hand, for a given parameter pair a, b, the shape groups are invariant to minor con- 
figurational changes within certain domains of a nuclear configuration space [33]. 
Within these domains, the essential shape features of G(a, u), with respect to the 
specified curvature parameter b, are preserved, that is, the corresponding minor 
changes of the nuclear configurations do not change the shape classification of the 
molecule with respect to the curvature parameter b and the physical property 
described by G(a). Note, however, that for a different curvature parameter b, the 
invariance domains of shape groups within the nuclear configuration space are in 
general different. As we shall discuss in more detail in a subsequent section, a complete 
description of all shape features along the entire configuration space can be given by 
considering the product space 

D = M ® P, ( lO) 

where M is a metric nuclear configuration space [39,40] and P is the parameter 
space of parameters a and b. The dimension of M is 3 N -  6 for molecules of N 
nuclei, whereas the dimension of P is 2; hence, the dimension of D is 3 N -  4. Since 
within space D one may follow the shape variations with changes in nuclear con- 
figurations for all values of parameters a and b, space D is referred to as tile dynamic 
shape space (vide infra). 

For a single nuclear configuration, the shape characterization based on D** 
domains may be regarded as a discrete, algebraic shape descriDtion that depends on 
two continuous parameters a and b. This feature 'allows one to use a concise character- 
ization made possible by the discrete nature of the algebraic model, yet the presence 
of continuous parameters permits a details description. Particularly important is the 
fact that the discrete descriptors change only at certNn specific values of the con- 
tinuous parameters, as we shall see later. This is the very reason why the method is 
advantageous when compared to a straightforward, but cumbersome representation 
of shapes by a continuous, three-dimensional molecular function itself (e.g. by a 
three-dimensional charge density where, in fact, the density value corresponds to a 
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:fourth dimension). By considering the entire, chemically accessible range of the two 
continuous parameters, one, indeed, obtains a complete description of the shape of 
the three-dimensional molecular function (e.g. charge density) for the given nuclear 
configuration, or for a family of configurations within space M. 

It is important to emphasize that the shape groups do not depend on the 
choice of subdivisions of the Du domains, in spite of the fact that the incidence 
numbers and the set of all p-chains (p < 2) do depend on this choice. As we shall 
see, this does not diminish the usefulness of analyzing the incidence relations directly. 

In this study, we propose alternative descriptions mtd representations of 
shapes of contour surfaces, using information derived directly from the incidence 
numbers r~i/(p - 1), on the one hand, and based on neighbor relations of D r domains, 
on the other hand. For each fixed nuclear configuration, these descriptions lead to 
graph representations that are more directly amenable to pictorial interpretation than 
the more abstract homology groups. In a subsequent section, we will introduce the 
concepts of the dynamic shape space and dynamic shape graphs for the description 
of shapes of conformationally flexible molecules or reacting systems, which will 
provide a unified framework for shape groups, incidence graphs, and shape graphs. 

2. I n c i d e n c e  mat r ices ,  i nc idence  graphs,  and  shape  graphs  

For dimension p (p = 1, 2) and curvature parameter b, the incidence numbers 
Wi/(P - 1, b) of contour surface G(a), taken as matrix elements, form the incidence 
matrix 

~?(p - 1, b). (1 1) 

Evidently, this incidence matrix does depend on the subdivision of D r domains, 
since the subdivision defines both the 1-celts and the 0-cells. Consequently, any 
shape description that is based directly on a particular incidence matrix r/(p - 1, b) is 
subdivision-dependent. However, this ambiguity can be avoided if the subdivisions are 
standardized in some well-defined way. In particular, two approaches appear natural 
within the above context of the D r domain partitioning, both involving the minimum 
nutnber of subdivision lines, compatible with some additional conditions: 

(i) a mhtimal triangulation of G(a) involving all boundary lines of the Du 
domains, or 

(ii) a minimalsubdivision that partitions every multiply connected D u domain 
into simply connected sets. 

In the present study, we shall assume that condition (ii) is applied. 
The incidence matrix r / ( p -  1, b) defines a graph, the incidence graph 

gn(p - 1, b), by taking the absolute values of incidence numbers ~lq(P - 1, b) as 
the elements of an adjacency matrix AI(& 7 (p - 1, b)): 
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Aii{.%( P -  1,b)) = Irl i j{p-  l , b ) l .  (12) 

The pair of incidence graphs &7(0, b) and gr/(1, b) provide a concise repre- 
sentation of all the interrelations among all cells of different types, hence all shape 
features relative to some specified reference curvature value b. 

The homology-theoretical boundary of a boundary is zero for any c p chain, 

~ c  p = 0. (13) 

As can be shown (see, e.g. ref. [37]), in terms of incidence matrices the above 
relation can be given as the following matrix identity: 

n(p -1,b)n(p - 2 ,  b }  : 0 .  (14} 

The vertices of each incidence graph gn{p - 1, b) are the p-cells and the 
(p - 1)-cells of the actual cell-decomposition of contour surface G(a). The edges 
of g~{p - 1, b) are the cell pairs of nonzero incidence relation. Since each edge of 
&~(p - 1, b) necessarily involves one p-cell and one (p - 1)-cell. each incidence 
graph &l(p - 1, b) is necessarily a bipartite grat)h [41], with the two families of 
vertices of the bipartition precisely the families of/)-cells and (p - 1)-cells. 

Since in both incidence graphs gr7(p-  1, b) and gr~(P- 2, b) the vertex 
family of all (p - 1 )-cells is common, it is natural to consider all incidence relations 
(orientations disregarded) within a single graph. This incidence graph gT;(b)is defined 
as the smallest supergraph of incidence graphs gr~(1, b) and gT~(0, b). In terms of 
vertex sets V(g) and edge sets E(g), the incidence graphs gT~(b) are defined by 

and 

V(&~(b)) = V(&~(1, b)) U I/{&~(O, b)) (15} 

E(g~(b)) = £(g,}(1, b)) u E(gr~(O, b)). (16) 

Evidently, the above construction implies that each incidence graph g,~(b) is 
also a bipartite graph, where the two families of vertices of the bipartition are the set 
of  all 1-cells {C(1,/J, i)}, and the union of the families of all O-cells and 2-cells 
{C(O,/a, i)} to {C(2, #, i)}. In fact, g,;(b) can be regarded as a special "tripartite" 
graph: there are three families of vertices (those of the O-cells, 1-cells and 2-cells, 
respectively), with no edge within any family, and with the special restriction that 
no edge exists between O-cells and 2-cells. Such incidence graphs and their subgraphs 
can be characterized in terms of their chromatic numbers [41]. 

The above incidence graphs g~)(0, b), g,~(1, b) and grT(b) are based on the 
incidence relation of homology theory of algebraic topology. However, a different 
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family of graphs describing the shape of contour surface G(a), with respect to a 
curvature parameter b and the resulting D~ domain decomposition, can also be 
defined using the neighbor relations among the Du domains. These graphs will be 
referred to as shape graphs, and the gu(b) notation will be used to distinguish them 
from incidence graphs g~ (b). 

In contrast to the incidence graphs, the construction of shape graphs g~,(b) 
does not require any subdivision or triangulation of the D, domains of G(a), hence 
there is no need for choosing an appropriate standardization of subdivisions. Instead, 
the construction is based directly on the relative distribution of various Du domains 
along the contour surface G(a). 

The vertex set of graph g~L(b)is the family of D~ domains: 

t : ( g . (b ) )  : / D u , i t ,  (17) 

where Dr, i denotes the D~, set that is the ith maximum connected component of the 
set A~, of all points of index /20. It is important to keep ill mind that the index i in 
the notation Du, i corresponds to a well-defined decomposition of set Au into maxi- 
mum connected components, whereas in eqs. (21)--(4), index k in the notation D~, k 
corresponds to a decomposition of A~ into simply connected subsets: the latter 
decomposition may involve some arbitrariness. 

The edge set is defined ill terms of the following N-neighbor relation, analogous 
to the "symmetric strong neighbor" relation of potential surface catchment regions 
of reaction topology [42,40] : 

1 if (D~, i C3 D,,,i, ) U (D~, i C~ D~,i, ) ~ 0 
N(Dm i' D~,, i' ) = 0 otherwise, (181) 

where the superscript c denotes the set-theoretical closure within the Euclidean 
metric of the laboratory frame. 

The edge set is the family of pairs of Du domains with nonzero N-neighbor 
relation: 

E(gu(b)) = {(Du, i, Du,,i, )" N(Dmi, Du,,i,) = 1} . (19) 

Shape graphs g~(b) gives a detailed shape characterization of contour surface 
G(a), with respect to reference curvature b. 

The typical nonzero N-neighbor relations are those involving the following 
types of pairs of D~ domains: 

(Do, i, Dl,i') (20) 

and 
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(Dl , i ,  , D2, i. ). (211) 

No nonzero N-neighbor relation is possible between two D, domains of the same /1 
index, since each I_)~, i domain is a maxin:um connected component of set A u of all 
points of G(a) within index #. 

However, a nonzero N-neighbor relation between a D o and a D 2 domain is 
not impossible. A point r ~ G(a) may simultaneously belong to a Do, i, domain and to 
the closure of a D2, i domain, 

r ~ D~ i ~ Do,i' " (22) 

if at point r both local canonical curvatures hi (r) and h2(r) are equal to the reference 
curvature b. This is a very uncommon possibility, that is in fact a sufficient and 
necessary condition for the existence of a (O2,i, Do,  i, ) edge within shape graph g, (b). 

The above conditions may be expressed directly in terms of local Hessian 
matrices. The closure D~, i of a domain D 2 i contains point r, where for the eigen- 
values of matrix IHi(r) the relations 

h 1 ~ b = It 2 (23) 

hold. Since in the case of the strict inequality < in eq. (23) such a point r belongs to 
some D:, i, domain, these two domains D2, i and D~, i, are N-neighbors, according to 
definition (18). 

Similarly, the closure D~,j of a domain L)l, j contains points r for which the 
relations 

b = h i ,  b < h 2 (24) 

hold; consequently, point r must belong to some domain Do,i, , implying that D1, j 
and Do, j, are N-neighbors. 

Clearly, a point r within the closure D e of a D 2 i domain can belong to a 2, i  , 
d o m a i n  Do, i, on ly  if for the eigenvalues of [HI(r) 

h~ = h 2 = b (25) 

holds. Consequently, a pair of d o m a i n s  D2, i and Do, i, are N-neighbors if and only if 
at a boundary point r the loc'A Hessian matrix has two degenerate eigenvah~es, which 
happen to be equal to the reference curvature value b. This is a sufficient and necessary 
condition for an N-neighbor relation between D O and D 2 domains. Note that each 
D o domain is a closed set; hence, intersections of the type D~ n D 2 are 'always empty 
and they cannot contribute to a nonzero N-neighbor relation, according to defini- 
tion (18). 
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This result has an interesting consequence regarding the type of shape graphs 
g,(b) that may occur in cheinical applications. For a given reference curvature b, the 
typical boundary points r of a D, domain decomposition of the contour surface G(a) 
are characterized by either one of the two pairs of relations: relations (23) with the 
strict inequality < ,  or relations (24). That is, typically only the (1,2) and the (0, 1) 
combinations occur for the p indices in the N-neighbor relations on G(a). Conse- 
quently, a typical shape graph gu(b) is a bipartite graph; the two vertex families of 
the bipartition are the set of  all D1, i, domains and the union of the sets of all Do, i and 
all D2,i,, domains. In fact, similarly to the incidence graphs gn(b), a typical shape 
graph g,(b) is a formal, special tripartite graph. There are three families of vertices: 

and 

{ Do,i }, (26) 
( - i  

(28:t 

where there are no edges involving two vertices from the same set, and in the typical 
case (but not in all cases), the following special restriction applies: no edge exists 
between vertices of the first and last of these sets ((26) and (28)). 

As implied by conditions (2 ) - (4 ) ,  exceptions to the typical case require a 
special degeneracy of the eigenvalues of a local Hessian matrix (eq. (25)). If such 
degeneracy occurs, then a (0, 2) combination for the p indices may exist, and then 
the resulting shape graph gu(b) may be a graph that is not bipartite. However, even 
in this special case, as long as all three types of D, domains are present, gu(b) is still 
a format tripartite graph of the same sets of tripartition as given by eqs. (26)- (28) ,  
but without the additional restriction. There exists at least one edge between some 
vertex of the first set, given by eq. (26), and some vertex of the last set, given by 
eq. (28). 

Since all of these graphs can be actually drawn on the contour surface G(a), 
it is evident that the existence of a homeomorphism between G(a) and a two-sphere 
2S is a sufficient (but not necessary) condition for the planarity [41] of any one of 
these graphs. 

. T h e  d e p e n d e n c e  o f  i nc idence  graphs  gn (b )  and  shape  graphs  g,  ( b )  
on  cu rva tu re  p a r a m e t e r  b and  c o n t o u r  p a r a m e t e r  a o f  the  c o n t o u r  
sur face  G (a) 

Since the curvature classification of contour points r of  G(a) refers to an 
orientation with respect to the interior and exterior of G(a), the reference curvature 
b may take both positive and negative values: 
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- o o  < b < oo ( 2 9 )  

Just as in the case of shape groups [ 3 0 - 3 3 ] ,  the chemically interesting incidence 
graphs and shape graphs belong to b parameters of absolute values bounded by some 
constant b o. For the special choice of b = 0, tile incidence graphs and shape graphs 
desclibe the interrelations among convex-, concave-and saddle-type domains on G(a). 
In this special case, the point set of  the boundary lines of all D,, domains consists of 
all the parabolic points of  G(a) [30--33].  

For a negative b of a large enough absolute value, 

b < O, (30) 

relation (2) holds for eigenvalues h 1 and h 2 at all points r C G(a); consequently, the 
entire contour surface G(a) is a single, simply connected D O domain. This implies 
that incidence graph g~2(0, b) does not exist, and the incidence graphs gTl(1, b), 
gr~(b) and the shape graph g~(b) are trivial graphs of a single vertex. 

For a large enough positive value b, 

0 < b, (31) 

relation (4) holds for eigenvalues h 1 and 1l 2 at each point r C G(a). The entire contour 
surface is a single, simply connected D 2 domain. Just as in the previous case, incidence 
graph gn(0, b) does not exist; the incidence graphs g,v(1, b), gr~(b) and tile shape 
graph ~ ( b )  are trivial graphs. 

Consider now the chemically more interesting intermediate values for curvature 
parameter b, leading to nontrivial graphs. A continuous change in reference curvature b 
leaves the incidence graphs and the shape graphs invariant within certain (b 1, b2) 
intervals: however, the graphs change at the interval limits. The typical change is the 
addition or elimination of a single vertex, accompanied by the addition or elimination 
of incident edges, respectively, fulfilling the appropriate conditions for bipartite or 
formal tripartite graphs~ discussed above. Simultaneous additions or eliminations of 
several vertices are usually indications of a nontrivial symmetry of the contour surface 
G(a). 

The incidence graphs gn and shape graphs g,~ show a similar dependence on 
the contour parameter a of G(a). For example, let us assume that the physical 
property used for shape description is the electronic charge density, that is, G(a) is 
an isodensity contour of the molecule, characterized by the density value a. Then, 
for any fixed curvature parameter b, the D, domain decomposition, and hence the 
incidence and shape graphs obtained, depend on this density value a. The graphs are 
invariant within certain density intervals (a~, a 2); however, they change at the limits 
a~ and a 2 of such intervals of invariance. The typical change,just as for parameter b, 
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is the inclusion or elimination of a single vertex with its incident edges. Simultaneous 
multiple vertex changes usually indicate some nontrivial symmetry of G(a). For the 
electronic charge density contour value a, one may in principle consider the entire 
range of 

0 ~ < ( , <  ~ .  (32) 

However, very small and very large contour values a provide little useful insight, 
since they correspond to large, essentially spherical surfaces at large distances from 
the molecule at their centers, and to a family of small, nearly spherical surfaces near 
the nuclei, respectively. For all but the extreme values of curvature parameter b, these 
cases correspond to trivial graphs and completely disconnected graphs, respectively. 
The chemically interesting cases are those of intermediate charge density values a. 

The dependence of these graphs on the two parameters a and b can be repre- 
sented by the distribution of graphs along an a, b parameter plane P. Such a repre- 
sentation has been introduced earlier for shape groups [31], and in the case of 
incidence graphs and shape graphs, the analogous considerations apply. In particular, 
a coml)lete description of  shal)es can be given by specifying the boundaries of those 
regions of the a, b parameter plane P within which the graphs are invariant. 

. T h e  d e p e n d e n c e  o f  i nc idence  graphs  g,~ (b) and  shape  graphs  g. (b) 

on  the  nuc l ea r  c o n f i g u r a t i o n  

Molecules are not rigid, geometrical objects, but dynamic, topological entities 
([40] and references therein). Hence, a complete characterization of their shapes 
requires the consideration of entire families of formal nuclear configurations and not 
.just one or a few selected nuclear geometries. However, the contour surfaces G(a) and 
hence the resulting shape groups H p, incidence graphs gn, and shape graphs g~, are 
easiest to define for fixed, formal nuclear geometries. Evidently, these groups and 
graphs for specified parameter values a and b, as well as their domains of'invariance 
within the a, b parameter plane P, do depend on the formal nuclear configuration. 
Nevertheless~ these shape groups and graphs do reflect the topological nature of 
molecular species, since they remain h~variant to minor geometry variations within 
certain domains of the nuclear configuration space. 

In reaction topology, a (3N - 6)-dimensional metric space M of all internal 
configurations of any N-atom system can be given [39,40]. This metric space M of 
metric d M is a convenient tool for the classification of formal nuclear configurations K 
into catchment regions of any given potential energy hypersurface [43]. These catch- 
ment regions represent the various chemical species of a given, fixed stoichiometry 
and the electronic state of a specified k number of electrons, associated with the 
given potential energy hypersurface [43,40]. 
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We assume that the parameter plane P of points (a, b), 

P = {(a, b)} , (33) 

is provided with an Euclidean metric dp, 

dp [(a~, b~ ),(a 2, b 2 ) l  = [(a~ - a=)  2 + (b~ - b 2 ) 2 1 1 / 2  (34) 

In terms of metric spaces M and P, a complete, dynamic descripticm o f  molecular 
shape can be given as follows. 

Take the product space D = M ® P of dimensions 3N - 6 + 2 = 3N - 4, 

dim(D) = dim(M ® P) = 3 N -  4, ( 3 5 )  

and define a metric @ as 

d D = [dp + d~2~l 1/2 (36) 

Space D, provided with metric C/D, is the "dynamic shape space", mentioned in the 
introduction. 

For a given family of N nuclei and for the given electronic state of k electrons, 
the shape groups H p, incidence graphs gT~, and shape graphs gu are invariant within 
certain domains of the dynamic shape space D. For each of the above shape descriptors, 
its invariance domains generate a complete partitioning of the product space D. For 
example, considering the shape groups H p or the shape graphs gu' the specification 
of the boundaries of their respective invariance domains within D is equivalent to a 
complete description of the dynamic shape features o f  all molecular species of 
stoichiometry specified by the N nuclei and of the given electronic state of the k 
electrons. 

For each dimension p of shape groups H p (p = 0, 1, 2) and incidence graphs 
gn(p - 1) (p = 1,2), as well as for incidence graph gT~ and shape graph gu' the subsets 
of invariance within the dynamic shape space are denoted by Ai(Xi):  

Ai(Hp' i  ) = { d : d C D ,  HP(d) = H p'i} , (37) 

and 

Ai(gn,i(  p -  1)) : { d : d E D ,  g n ( p -  1,d) = gr~,i(P- 1)} , 

Ai(gn, i) = { d : d  CD,  gn(d) = g~,i , 

(38) 

(39) 

Ai(g., ;) = la:a~D,g.(a) = g.,~.} (40) 



P.G. Mezc:v, Shal)e group studies of molecular similariO' 313 

In the above definitions, d C D is a point of the dynamic shape space, that is, 
d represents a combination of a pair (a, b) E P of a parameter value a for charge 
density (or electrostatic potential, or MO, etc.) and reference curvature b, on the one 
hand, and some specified nuclear configuration K E M, on the other hand. Index i 
is the serial index of the ith r<[erence entiO, X i of a given type: the ith rc(erence 
group H p' i or the ith rc[erence graph grl, i(P - 1), or gm i, or gu, i, 

X i= H p'i (p = O, 1,2), g~, i (P-  1) (p = 1,2), g~,i, or gu,i" (41) 

On the right-hand sides of eqs. (37) (40), HP(d), g,~(p - 1, d), g~(d), and gu (d) 
stand for the actual shape group or graph at the specified point d of the dynamic 
shape space D. A general notation X(d) is used for any one of these latter, actual 
shape descriptors at point d. 

For each point d within a given set Ai(Xi) , the actual group or graph X(d) 
is identical to a specified reference group or graph X i. These Ai(Xi) sets are pai~'ise 
disjoint and generate a partitioning of the dynamic shape space D : 

D : U A i ( X i )  , (42) 
i 

A i ( x i )  c~ A i , ( X ~ , )  = ¢J if i 4: i ' .  (43) 

A set Ai(X i ) is not necessarily connected, and we may consider its maximum 
connected components Di, j( Xi ) 

Ai(Xi) = U D i , / ( X i )  , (44) 
] 

Di, j(Xi)  c~ Di, i ,(Xi) = 0 if j 4 = j ' .  (45) 

A detailed partitioning of the dynamic shape space D into shape regions by 
shape descriptor X i can be given in terms of these maximum connected components, 

D = H Di,/(Xi), (46) 
z,]  

for each of  the shape descriptors X i specified in (41 ). 
Since any continuous change d(/)-+ d( / ' )  leading from one component 

Di, j(Xi) to another component Di, j ,(Xi) of Ai(Xi) must involve points d character- 
ized by a group or graph Xj, dif[brent from X/, the term domain ofinvariance is used 
for the components Di, j(Xi), rather than for the set Ai(Xi). 

Partitioning (46) of the dynamic shape space D is completely specified if the 
boundaries of the domains of invariance Di,j(Xi) are given. 
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. Catc lmle n t  regions o f  m o l e c u l a r  species and  invar iance d o m a i n s  

o f  the  d y n a m i c  shape space 

The partitioning (46) of tile dynamic shape space D involves all possible 
chemical species composed from the specified N nuclei, that is, it describes the shapes 
of all possible conformations of all species of a specified stoichiometry with k electrons 
in the given electronic state. It is of some interest to investigate the following two 
problems: 

(i) What shapes are available for a given chemical species, allowing only such 
variations of the formal nuclear geometry that preserve the chemical 
identity of the species? 

(ii) Which are those chemical species of the given stoichiometry that may 
have formal nuclear configurations belonging to some common shape 
invariance domain Di, j (Xi) ,  or invariance set Ai(Xi)? 

Within the reaction topology of nuclear configuration space M, the chemical 
species are represented by catchment regions [43], defined in terms of a given poten- 
tin energy hypersurface of some specified electronic state [39,40]. These catchment 
regions, denoted by C(X, t) and identified with chemical species, generate a decomposi- 
tion of the nuclear configuration space M : 

M = u C(X, t). (47} 
, \ , t  

Each catchment region C(X, t) is defined as the collection of all those configura- 
tions K of M from where a path of formal steepest descent of the given potential 
energy hypersurface leads to a common critical point K(X, t) of critical point index X 
and serial index t. 

Within the above model, the two questions (i) and (ii) can be reformulated in 
terms of relations between the Di, j (Xi)  domains of invariance of the dynamic shape 
space D and the catchment regions C(X, t) of nuclear configuration space M. A simpli- 
fied, schematic representation of these two problems (i) and (ii) is shown in fig. 1. 

For each catchment region C(X, t), a subset D(C(X, t)) is given, 

D(C(X, t)) = P ® C(X, t), (48) 

that is the set of all points d E D which involve any point K E C(X, t) of catchment 
region C(X, t) C M, in combination with any values of parameters a and b of para- 
meter plane P. 

As answer to question (i) can be given as follows: 

A molecular shape characterized by descriptor X i is available to chemical 
species C(X, t) if and only if 
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[] , D( C(X ,t)) ', ' ' ' , D(C(~. ,t)) ,, 

i , j  " 

' ' " " ' " " ' " " ' " " ' " " 4  . . . . . . . . . . . . . . . . . .  

' c(x ,t) I C(k ',t') : [ ]  

i P~,,( Did (Xi ) )  i 

Fig. 1. A schematic representation of the dynamic shape space D, the product space 
composed from a (3N-6)-dimensional  nuclear configuration space M a n d  the 
t\~o-dimensional space P of parameters a (e.g. the charge density contour value) 
and the reference curvature b). In the figure, each of the spaces Mand  P are 
schematically represented by one-dimensional coordinate axes. The figure shows 
the decomposition of the dynamic shape space D into shape invariance domains 
Oi,j(X i) of shape descriptor X i (shape group HPo,, a, b), or incidence graphs 
gGi' grt, i (p - 1) (p = 1, 2), or shape graph gt,,i ), Set D(C(x, t)) is the point set 
of the dynamic shape space available for chemical species represented by catchment 
region C(X, t). This set overlaps with several shape invariance domains D i~;(Xi). 
The set PM(Di,i(Xi)) is the projection of shape invariance domain Di,j(X f}_ onto 
the nuclear configuration space M. In the example it overlaps with two catchment 
regions C(,k, t )and C(X', t ') ,  indicating that the corresponding shape, as character- 
ized by group or graph 2[~., is available to these t~o chemical species. 

D(C(X,  t)) (3 Di, j (X i )  ~ 0 for some index j. (49) 

In t'act, it is useful to restrict the f reedom present on the parameter  plane P to 

some chemical ly realistic densi ty  values (or  o ther  p rope r ty  values) a o f  con tou r  

surfaces G(a) and to some intermediate  values o f  curvature  parameter  b, for example,  

by  considering only  a subset D( C(X, t), (a 1 , a 2 ), (b 1 , b z )) of  set D( C(X, t) ), defined as 

D( C(X, t), (a l, a2) ,  (b~, b2))  

: { d : d E D ,  d = a ® b Q K ,  a E ( a l , a 2 ) ,  b E ( b l , b 2 ) , K E C ( X , t ) } .  (50)  
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Evidently, a molecular shape characterized by descriptor X i is available to 
molecular species C(X, t) within some chemically realistic parameter ranges (a l, a2) 
and (b l, b 2) if and only if 

D ( C ( X , t ) , ( a i , a 2 ) , ( b i , b z )  ) (3 Di, j (Xi)  ~ 0 fo r someindex j .  (51) 

An answer to question (ii) can be given by considering the projection 
t~(Di,  j(Xi))  of the shape invariance domain Di, i (X  i) oil the nuclear configuration 
space M: 

PM(Di, j(Xi))  = {K:K C M, 3(a, b) C P:a 0 b ® K C Di, i (Y i )} .  (52) 

A chemical species C(X, t) may attain a formal nuclear configuration K 
characterized by shape descriptor X i within invariance domain Di, j (X  i) if and only if 
there exists some index j for which 

PM(D;,/(X;)) C', c(x,  t) > O. (53) 

Conditions (49), (51), and (53) specify all elementary relations between 
molecular identity and molecular shape within the above topological context. 

Considering a given shape invariance domain Di, j (Xi) ,  relation (53) may hold 
for several di/Jbrent chemical species. For example, it may hold i~r species C(X', t ')  
in addition to species C(X, t). That is, 

g,,s{D,,s(&)) n C(X', t ' )  @ 0 (54) 

may also be valid, in addition to (53). Evidently, the simultaneous validity of condi- 
tions (53) and (54) is required by any two chemical species C(X, t) and C(X', t ' )  to 
exhibit a common shape feature, specified by shape descriptor X i . 

6. Global  cha rac t e r i za t i on  o f  tim d y n a m i c  shape space D 

For a given shape descriptor Xi, the partitioning (46) of the dynalnic shape 
space D depends on the actual stoichiometry of the N nuclei and on the electronic 
state of the k electrons. These are the very aspects that define a potential energy 
hypersurface above the nuclear configuration space M [39,40]. Evidently, a different 
electronic state, or a different overall stoichiometry leads in general to a different 
dynamic shape space D. 

Instead of comparisons of the shapes of individual molecules, one may address 
the problem of the comparison of the families o f  shapes available to two different 
famiges of molecular species, described by two different shape spaces D A and D B. 
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Two such molecular families may share a common stoichiometry, but may have two 
different electronic states. Alternatively, the stoichiometry may differ between the 
two families. In either case, with respect to a given type of shape descriptor (group 
or graph) Xi, the comparison of the two families of molecular shapes available to 
the two families of molecules is equivalent to a comparison between the shape domain 
distributions (eq. (46)) of the two dynamic shape spaces JD A and D B. A concise 
characterization of the shape invariance domain decomposition (46) of any dynamic 
shape space D can be given in terms of the dynamic shape graph gD" 

The dynamic shape graph gD is defined by the vertex set 

V(g D) = (s5) 

containing the shape invariance domains Di, j(Xi) of the dynamic shape space D as 
elements, and by the edge set 

E(gD) = {(Di, i(Xi),Di, j,(Xi,)):N(Di, I(Xi),D~.,i,(Xi,)) = 1}, (56) 

containing the pairs of shape invariance domains with a nonzero N-neighbor relation. 
The comparison of the two distributions of shape invariance domains of the dynamic 
shape spaces D4 and D B can be given in terms of their respective dynamic shape 

graphs gDa and gDB. 
Each of these graphs gD characterize an entire dynamic shape space D, that is, 

all the possible shapes of all possible molecular species that exist along a given poten- 
tial energy hypersurface. This characterization, as every characterization given in 
terms of graphs, is concise, and it describes the most essential interrelations, all the 
possible direct and indirect shape transitions for the given stoichiometry and electronic 
state. If, however, the detailed analysis of one or a few shape invariance domains 
Di,j(Xi) is our goal, then a shape analysis can be carried out directly on these Di, j(Xi) 
sets themselves, using a (3N - 4)-dimensional variant of  the D u domain decomposi- 
tion of the boundary hypersurfaces of each set Di, j(Xi) (for the general, n-dimensional 
D,  domain decomposition in the b = 0 case, see ref. [38]). In terms of such a 
decomposition, the (3N-4)-d imens iona l  shapes of the shape invariance domains 
Di, j(Xi) of space D can also be characterized by their shape groups, their incidence 
graphs, and their shape graphs. In such a representation, the dynamic relations of 
molecular shape transitions appear as formal static shape features of the shape 
invariance domains Di, j(Xi). Further details of this interesting possibility are beyond 
the scope of the present study. 

EXAMPLE 

In fig. 2, various D~, domain partitionings of three electronic charge density 
contour surfaces G(a) of a single molecule are given for three charge density values 
a 1 , a 2 , and a a , respectively, where 
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D2,2 D2,1 

D24 ol [D0,2] 

b, 1 b=l 

b, I IG(a 3)' b2 ] 

Fig. 2. Three pairs of D/l domain partitionings of electronic charge density contour 
surfaces G(a) of a molecule, for charge density values a I > a 2 > a 3, and reference 
curvatures b 1 = 0 and b 2 > 0. Tile far sides of the contour surfaces are assumed to 
be the mirror images of the sides displayed. The heavy lines are the boundaries of 
the various D/l domains, whereas tile grey lines are those of a minimal subdivision. 
The domains Do, 2 and D 1,2 in diagrams (G(a l ) ,  b l )  and (G(a2), b2), respectively, 
are on the far sides, indicated by placing their symbols in square brackets [ ] ; these 
domains are the mirror images of domains /)0,1 and DI,1, respectively, where the 
latter are displayed in these diagrams. There are no grey subdivision lines on the far 
sides of the contour surfaces, except the continuations of lines leading to se t s / )0 ,2  
a n d / ) 1 , 2  on the above two contours (G(al), b 1) and (G(a2), b2). 
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a I > a 2 > a3, (57) 

and for two reference curvatures b~ and b2, where 

b 1 = 0 and b 2 > 0. (58) 

The far side of each contour surface, not shown in the figure, is assumed to be the 
mirror image of the near side displayed in the figure. The heavy lines are the bound- 
aries of  the various D,~ domains, whereas the grey lines are those of a minimal sub- 
division. Note that the number of subdivision lines used is the minimum needed to 
subdivide each multply connected D** set into simply connected subsets, and the 
number of  points where these lines join the boundary lines of the original D u sets 
is also tile minimum. In two of these diagrams, in (G(al), bl)  and (G(a2), b2), the 
domains denoted by Do, 2 and D1,2, respectively, are on the far side of their contour 
surfaces, a fact indicated by placing their symbols in square brackets [ ]. Domains 
Do,2 and D1,2 are the mirror images of domains Do, 1 and D1,1, respectively, where 
the latter are displayed in these diagrams. There are no grey subdivision lines on the 
far sides of the contour surfaces, except the continuations of the two lines leading 
to sets Do, 2 and D1, 2, on the above two contours (G(a,), b,) and (G(a2),b2), 
respectively. As tile parameter value a of tile charge density contour surface G(a) 
decreases from a 1 to a3, less and less shape details are distinguishable, as is indicated 
by the decompositions of these G(a) surface into domains. The two decompositions 
of  any one of these contour surfaces for the two reference curvature parameters b~ 
and b2, respectively, are clearly distinguishable, since they lead to different domains 
and different interrelations among them. 

In order to proceed with the proposed shape characterization, the G(a, 2) 
truncated contour surfaces are generated from the G(a) surfaces by the elimination 
of all the D2, i domains for all serial indices i. The Betti numbers bp (the ranks) of 
the resulting shape groups ItP(v, a, b) for truncation index u = 2 and for each of 
dimensions p = 0, 1, and 2, are listed in table 1. In fig. 3, the corresponding incidence 
graphs g,~, i are shown, which contain, as subgraphs, the incidence graphs gn. i(P - 1) 
(p = 1,2). In fig. 4, tile corresponding shape graphs gu,i are given. 

The above shape descriptors provide a concise, yet sufficiently detailed 
characterization of the shape of the electronic charge density of the molecule at the 
selected contour values a~, a2, and a3, with respect to reference curvatures b~ and b 2 . 
The detemlination of these groups and graphs does not require visual inspection, since 
all their properties can be derived from the contour surfaces, generated by the com- 
puter. The method may serve as a basis for a non-visual, computer-based analysis of 
molecular similarity, applicable to large families of molecules. 
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D2,1 
D2,2 
D2,3 
D2 A 
D2,5 
D1A 
Do A 
Do,2 

(p=2) (p=l) (p=0) 

gn(G(a i ),bl ) 

(p=2) (p= 1 ) (p=0) 

D2,1 
D2,2 
D1A 

grl(G(al),b2 )] 

D2 A 
D2,2 
D2,3 
D2 A 
DI,1 

gn(G(a2),bl) 

D2'l 
D1,1 
D1,2 

] gr~(G(a 2),b~ )] 

DI,I ~'----.....~ D2,1 • 
D2,1 

[g~(G(a,),b~ )1 [gq(G(a~),bl ) ] 

Fig. 3. Incidence graphs gT~,i of the example shown in fig. 2. Tile incidence graphs 
g~,i(p - 1) ( p = l , 2 )  are the subgraphs of the graphs displayed. Note that all 
these graphs are bipartite, l:or a discussion of other special properties, see the text. 
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Table 1 

The Betti numbers bp of the shape groups HP(v, a, b) of the charge 
density contour surfaces G(a) of the example of fig. 2, given for 
truncation index ~ .... 2 and for each of dimensions p = 0, l and 2. 

Shape group b 0 (p = O) b I (p = O) b 2 (p = 2) 

HP(2,al , b 1 ) 1 4 0 

HP(2,al, b 2) 1 1 0 

HP(2, a2, b 1 ) 1 3 0 

HP(2, a2, b 2) 2 0 0 

HP(2, a3, b 1) 1 0 0 

HP(2,a 3, b 2) . . . . . . . . . . . . . . . .  

D2'I 
D2.2 / D0.i D2,1 
D2, 3 • ~ Do. 2 D2.2 ~ DI,I 
D2 A ~|.I 
D2,5 

[ g , ( G ( a , ) , b 2  ) I 

[ g , (G(a~) ,b~  )] 

D2'I 
D2.2 D1A 
D2,3 
D2.4 

[ g~(G(a2),b,)] 

D2.1 ~ DI'I 
D1,2 

] g l.t (G(a 2),b2 ) 

DIA : : D2. l D2, l • 

Fig. 4. Shape graphs g~,i of the example shown in fig. 2. 
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